672 research outputs found

    Relativistic Bi-Stability In A Plasma Beatwave Accelerator

    Get PDF
    Beatwave excitation of plasma waves is analyzed in the regime where relativistic corrections to the plasma frequency are important. It is shown that a long beatwave pulse can excite strong plasma waves in its wake even when the beatwave frequency is detuned from the electron plasma frequency. The wake is caused by the dynamic bi-stability of the nonlinear plasma wave if the beatwave amplitude exceeds the analytically calculated threshold. Two possible beatwave drivers are considered: intensity-modulated laser pulse and density-modulated electron beam. It is found that, due to the relativistic bi-stability, so portions of the driver may experience photon blue-shifting (for the laser driver) or electron acceleration (for the beam driver). In the latter case a combined accelerator/injector is envisioned.Physic

    Wake excited in plasma by an ultrarelativistic pointlike bunch

    Get PDF
    We study propagation of a relativistic electron bunch through a cold plasma assuming that the transverse and longitudinal dimensions of the bunch are much smaller than the plasma collisionless skin depth. Treating the bunch as a point charge and assuming that its charge is small, we derive a simplified system of equations for the plasma electrons and show that, through a simple rescaling of variables, the bunch charge can be eliminated from the equations. The equations demonstrate an ion cavity formed behind the driver. They are solved numerically and the scaling of the cavity parameters with the driver charge is obtained. A numerical solution for the case of a positively charged driver is also found.Department of Energy DE-AC03-76SF00515U.S. Department of Energy DEFG02-04ER54742 DE-SC0007889 DE-SC0010622Air Force Office of Scientific Research (AFOSR) FA9550-14-1-0045Physic

    Left-Handed Surface Waves in a Photonic Structure

    Full text link
    It is demonstrated that an isotropic left-handed medium can be constructed as a photonic structure consisting of two dielectric materials, one with positive and another with negative dielectric permittivities epsilon. Electromagnetic waves supported by this structure are the surface waves localized at the dielectric interfaces. These surface waves can be either surface phonons or surface plasmons. Two examples of negative epsilon materials are used: silicon carbide and free-electron gas.Comment: 7 pages, two figure

    Analytic Model Of Electron Self-Injection In A Plasma Wakefield Accelerator In The Strongly Nonlinear Bubble Regime

    Get PDF
    Self-injection of background electrons in plasma wakefield accelerators in the highly nonlinear bubble regime is analyzed using particle-in-cell and semi-analytic modeling. It is shown that the return current in the bubble sheath layer is crucial for accurate determination of the trapped particle trajectories.Physic

    Plasmonic Scaling of Superconducting Metamaterials

    Get PDF
    Superconducting metamaterials are utilized to study the approach to the plasmonic limit simply by tuning temperature to modify the superfluid density, and thus the superfluid plasma frequency. We examine the persistence of artificial magnetism in a metamaterial made with superconductors in the plasmonic limit, and compare to the electromagnetic behavior of normal metals as a function of frequency as the plasma frequency is approached from below. Spiral-shaped Nb thin film meta-atoms of scaled dimensions are employed to explore the plasmonic behavior in these superconducting metamaterials, and the scaling condition allows extraction of the temperature dependent superfluid density, which is found to be in good agreement with expectations.Comment: 5 pages, 3 figure

    Monoenergetic Acceleration Of A Target Foil By Circularly Polarized Laser Pulse In Rpa Regime Without Thermal Heating

    Get PDF
    A kinetic model of the monoenergetic acceleration of a target foil irradiated by the circularly polarized laser pulse is developed. The target moves without thermal heating with constant acceleration which is provided by chirping the frequency of the laser pulse and correspondingly increasing its intensity. In the accelerated reference frame, bulk plasma in the target is neutral and its parameters are stationery: cold ions are immobile while nonrelativistic electrons bounce back and forth inside the potential well formed by ponderomotive and electrostatic potentials. It is shown that a positive charge left behind of the moving target in the ion tail and a negative charge in front of the target in the electron sheath form a capacitor whose constant electric field accelerates the ions of the target. The charge separation is maintained by the radiation pressure pushing electrons forward. The scalings of the target thickness and electromagnetic radiation with the electron temperature are found.Physic
    corecore